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Laplace pressure recovery

The pressure di�erence across a droplet free surface, ∆p due to surface tension is known as

the Laplace pressure. For a stationary, free droplet the Laplace pressure is given by

∆p =
2σ

rf
, (1)
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Figure S1: Analytical droplet pressure di�erence across the free surface compared to simu-
lated results for a free droplet of radius rf after 5× 10−3 capillary time units, τσ.

where σ is the surface tension and rf is the free droplet radius. As noted in the main

text, the gauge pressure (modi�ed pressure in OpenFOAM terminology) was initialised as

zero everywhere in this work due to the unknown pressure distribution within the meniscus

bridge. Hence, it is important to check that the analytical value of the pressure is correctly

recovered in a su�ciently short time so as not to have an undue in�uence on the dynamics.

In order to validate the recovery of Laplace pressure, a single free spherical water droplet

was initialised in the standard numerical setup used for the coalescence results reported.

Multiple droplet radii, from 0.5× 10−3 m to 2.4× 10−3 m, were considered. Recall that

gi = 0 so such a droplet is temporally stable. However, to be consistent across the droplet

sizes considered, the Laplace pressure was measured after 5× 10−3 simulated units on the

applicable capillary time scale,

τσ =

√
ρdr3f
σ

, (2)

where ρd is the droplet density. For a droplet with rf = 1 mm, t = 0.005τσ ≈ 19 µs,

before which time meniscus bridge growth is expected to be negligible. The analytical and

simulated mean Laplace pressure within the droplet (de�ned as cells where α > 0.9999) are

plotted against the reciprocal of droplet radius in Figure S1. Excellent agreement between
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Table S1: Mesh details for the mesh sensitivity analysis. `Re�ned cells' refers to cells within
re�ned region of the domain (the entire droplet volume and in the region of its free sur-
face) whilst `base cells' speci�es the minimum resolution in the air. Droplet resolutions are
computed with rf = 1.14 mm, consistent with the (numerical and laboratory) experiments.

No. re�ned cells No. base cells Re�nement Total No. cells Droplet Res.
per rf per rf Levels at t = 0.2 ms (µm)
64 4 4 0.58× 106 17.81
64 8 3 0.58× 106 17.81
80 5 4 1.06× 106 14.25
80 10 3 1.06× 106 14.25
96 6 4 1.76× 106 11.88
96 12 3 1.78× 106 11.88

the simulated and analytical results is seen, con�rming the correct, rapid recovery of Laplace

pressure and validating both the surface tension formulation within the numerical framework

and the initial condition for pressure.

Mesh sensitivity analysis

To determine the sensitivity to mesh resolution of the results presented in the main text, six

meshes with three di�erent numbers of cells per free droplet radius, rf within the droplet

were considered as detailed in Table S1. Two di�erent levels of re�nement were considered.

For example, a mesh with 10 cells per rf and 3 levels of re�nement (as generally used in

this work) have 10 × 23 = 80 cells per rf within the whole droplet volume. With each of

these six meshes, a similar study to that shown in Figure 3a of the main text was conducted,

with Vs = 3.6 mm, Vf = 6.2 mm, θa = 100°, θ0 = 82° and θr = 75°. The evolution of spread

length, total droplet height and internal interface height are presented in Figures S2, S3 and

S4, respectively.

All of the meshes considered are relatively �ne within the droplet region (especially

compared mesh resolutions generally used in the literature) so it is not surprising that there

is no large quantitative di�erence between any of them in any of the three metrics considered.

Even in regions of rapid change where di�erences are likely to be accentuated as only the
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Figure S2: Spread length evolution, normalised by the initial spread length, for six di�erent
meshes (detailed in Table S1). Vs = 3.6 mm, Vf = 6.2 mm, θa = 100°, θ0 = 82° and θr = 75°.
The green �lled marker represents the mesh resolution used in this work.

cell-centre values are used to derive the plotted data across a di�use interface (the interface

is de�ned as either α = 0.5 or β = 0.5, as appropriate), the di�erences due to the number

of cells in the droplet region are small and, in particular, negligible for the conclusions of

this study. Moreover, the dynamics were found to be remarkably insensitive to the mesh

resolution within the air, characterised by the number of base cells per rf . Higher numbers

of base cells with a constant re�ned region resolution (achieved by �xing the number of cells

within the droplet region by reducing the number of re�nement levels) have been considered

than are shown here with almost no quantitative di�erence in any of the three metrics.

In this work, 80 re�ned cells per rf were deployed, with a base mesh resolution of 10

cells per rf , indicated by the green markers in Figures S2, S3 and S4. The mesh sensitivity

analysis detailed here con�rms that all free surface and internal features are su�ciently

resolved with such mesh resolution, whilst further re�nement would have had a negligible

e�ect on the results presented in the main text.
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Figure S3: Total droplet height evolution, normalised by the initial total droplet height, for
six di�erent meshes (detailed in Table S1). Vs = 3.6 mm, Vf = 6.2 mm, θa = 100°, θ0 = 82°
and θr = 75°. The green �lled marker represents the mesh resolution used in this work.

Interface compression velocity

The de�nition and computation of the compression velocity, uc,i found in the advection-

di�usion equation for α (equivalently β) is explained in detail here. In particular, it will be

useful for those wishing to implement a conserved scalar within an OpenFOAM solver and

therefore should aid in reproducing this work. The conserved scalar is assumed to be the

volume fraction, α throughout here, but the passive scalar, β is treated in the same way.

As insinuated in the main text, the compression term has a user-modi�able coe�cient,

cα which is taken to be unity in this work. Many such values can be found in the literature,

where one is usually the lowest. An optimum choice does not necessarily exist, and the

appropriate value can depend on many factors including the underlying �ow physics and

other solver settings chosen (see below). The value of one was chosen here to avoid over

compression that might have an undue in�uence the delicate free surface dynamics.

In OpenFOAM 4.1, the compression velocity is given by

uc,i = cα

∣∣∣∣∣∣ φ(
Sf,jSf,j

) 1
2

∣∣∣∣∣∣ n̂i, (3)
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Figure S4: Internal interface height evolution, normalised by the initial internal interface
height, for six di�erent meshes (detailed in Table S1). Vs = 3.6 mm, Vf = 6.2 mm, θa = 100°,
θ0 = 82° and θr = 75°. The green �lled marker represents the mesh resolution in this work.

where Sf,j is the cell face area vector and φ is the volumetric �ux through the cell face.

Within the numerical framework, the velocities in eq 3 are those projected onto the cell

faces in the �nite volume discretisation. Hence, eq 3 is actually an equation for the face-�ux

compression velocity which is calculated in the alphaEqn.H �le of the interFoam solver.

The unit normal to the interface, n̂i is mathematically de�ned as

n̂i =
∂α

∂xi

/(
∂α

∂xk

∂α

∂xk

) 1
2

. (4)

As was the case for velocity though, the cell face values are required in eq 3. Hence, the

volume fraction gradients are actually interpolated from the cell centres to the cell faces

in the numerical framework before being substituted into eq 4. Note that away from the

free surface, the volume fraction gradients should vanish. To stabilise the computation, an

additional small term, δN is added to the denominator of eq 4, which is given by

δN = ε

(∑N
k=1 Vcell,k

N

)− 1
3

,
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Table S2: Solver settings for α. Equivalent settings are used for β.

Option Value Notes
nAlphaCorr 1
nAlphaSubCycles 1 Time step tightly controlled instead of subcycling.
cAlpha 1 Small to avoid too much interface compression.
MULESCorr no Keep MULES explicit rather than semi-implicit.
nLimiterIter 1 One MULES iteration over the limiter.
Preconditioner DIC
Solver PCG
Tolerance 1× 10−9 Set low to ensure convergence.
Rel. Tolerance 0 Forces solution to converge to the tolerance above.
Min. Iterations 50 Ensure stable converged solution each time step.
Max. Iterations 1000 Set high so as not to be an e�ective constraint.

where N is the number of cells, ε is a scaling constant (typically taken as 1× 10−8) and

Vcell,k is the volume of the kth cell. The formulation in brackets represents the average cell

volume, so it is clear than δN is typically a very small number. The same approach is used

to compute the normal for the free surface curvature, κ described in the main text and is

implemented in the interfaceProperties.C �le within the OpenFOAM source code.

Solution and algorithm control

This section lists the linear equation solvers, tolerances and settings used for the simulations

in this work, and provides justi�cation/explanation of the choices where appropriate.

In general, the residual tolerance was set very low for all variables to ensure convergence

at each time step, thus favouring accuracy over speed. The relative tolerance was always set

to zero (i.e. its in�uence was rescinded) to ensure that the prescribed tolerance was reached.

Whilst a maximum number of iterations was set, the value was chosen to be very large so

that it was not an e�ective constraint.

Subcycling of advection-di�usion equations is often performed in OpenFOAM simula-

tions in order to relax the strict Courant number limit on the time step. However, in this

work it was preferred to maintain a strict Courant number limit (i.e. 0.15) for the con-
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Table S3: Solver settings for p_rgh (the modi�ed pressure).

Option Value Notes
Smoother Gauss Seidel
Solver GAMG More e�cient (far fewer iterations) than, e.g., PCG.
Tolerance 1× 10−7 The �nal iteration tolerance is 1× 10−8.
Rel. Tolerance 0 Forces solution to converge to the tolerance above.
Min. Iterations 2
Max. Iterations 1000 Set high so as not to be an e�ective constraint.

tact angle model implementation. Therefore, no subcycling was required. Note that it was

crucial to implement the scalar (α and β) advection equations using the Multidimensional

Universal Limiter with Explicit Solution (MULES) algorithm to ensure the scalars remain

bounded between zero and one. MULES is a �ux-corrected transport scheme implemented in

OpenFOAM. An explicit version of the MULES solver was maintained, as seen in Table S2.

Table S4: Solver settings for pcorr (the pressure correction).

Option Value Notes
Smoother Gauss Seidel
Solver GAMG More e�cient (far fewer iterations) than, e.g., PCG.
Tolerance 1× 10−8 Set low to ensure convergence.
Rel. Tolerance 0 Forces solution to converge to the tolerance above.
Min. Iterations 2
Max. Iterations 1000 Set high so as not to be an e�ective constraint.

In OpenFOAM, the hydrostatic pressure contribution is subtracted from the usual pres-

sure to de�ne a modi�ed pressure, p′ = p− ρgjxj for numerical convenience. Hence, details

for this modi�ed pressure (called p_rgh) are given in Table S3. Table S4 give details of the

pressure correction required for the dynamic mesh. The velocity is determined from the up-

dated pressure in each time step with the settings seen in Table S5. A momentum predictor

step was employed at the beginning of each time step (see Table S6).

A pressure-implicit with splitting of operators (PISO) algorithm was used to solve the

coupled momentum and mass conservation equations, with the controls given in Table S6.

No under-relaxation was applied (relaxation factors were set to one).
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Table S5: Solver settings for U (the velocity).

Option Value Notes
Preconditioner DILU
Solver PBiCG Computational cost not enough to warrant GAMG.
Tolerance 1× 10−10 Set low to ensure full convergence.
Rel. Tolerance 0 Forces solution to converge to the tolerance above.
Min. Iterations 5
Max. Iterations 1000 Set high so as not to be an e�ective constraint.

Discretisation schemes

Linear interpolation was used for centre-to-face interpolation of values to determine cell

face data, whilst a corrected surface-normal gradient scheme was used for gradients, and a

corrected scheme was used to determine components of the gradient normal to a cell face

(snGradSchemes).

Table S7 details the discretisation schemes used. The Euler scheme in OpenFOAM is

�rst order implicit and bounded. The limitedLinear scheme has a `V' added to ensure the

direction of steepest gradients were taken into account within the calculation. A special

version of the vanLeer scheme was used for the advection of the volume fraction, α and

passive scalar, β to bound the blending factor between 0 and 1. In particular, the underlying

scheme is vanLeer, but becomes upwind if the blending factor goes out of bounds in order

to stabilise the solution. The Gauss interfaceCompression scheme is speci�cally designed

for the compression term described above, so should always be used with it.

Table S6: PIMPLE controls (reduced to PISO), controlling the algorithm solving the coupled
equations for momentum and mass conservation via a pressure equation.

Option Value Notes
Momentum Predictor yes
No. Outer Correctors 1 Reduces to PIMPLE to PISO.
No. Correctors 3
No. Non-Orthogonal Correctors 1 Update explicit non-orthogonal correction.
Mesh Dynamic yes Correct pressure for moving mesh.
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Table S7: OpenFOAM discretisation schemes used in this work.

Term OpenFOAM Scheme
Time derivatives (i.e. ∂/∂t) Euler

Gradients (i.e. ∂/∂xi) Gauss linear

Tensor advection (e.g. ∂(uiuj)/∂xj) Gauss limitedLinearV 1

Viscous stress Gauss linear

Scalar advection Gauss vanLeer01

Scalar compression (anti-di�usion) Gauss interfaceCompression

Laplacian Gauss linear corrected

Changing receding contact angle � total droplet height

Figure S5: Total droplet height normalised by initial droplet height at t = 0 ms. Image-
processed experiments with Vs = 3.9 µL and simulation results (solid lines). θa = 100° and
θ0 = 82° in all simulations.

Figure S5 demonstrates the e�ect of changing the receding contact angle on total droplet

height using simulations, accompanying those for the internal interface height and spread

length in the main text. The �xed prescribed contact angle values are θa = 100° and θ0 = 82°.

The droplet volumes are such that no internal jet materialises in the experiment (Vs = 3.9 µL;

Vf = 6.2 µL), with the appropriate image-processed data also shown. Excellent agreement

between the experiment and the θr = 50° simulation is evident, with little di�erence between

all of the simulated cases until column collapse (after the maximum height). Indeed, column

collapse is slightly delayed for the largest contact angle (θr = 70°) due to the lower minimum
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spread length acting to hold the droplet up. Due to the higher contact angle hysteresis,

the shoulder (temporary reduction in the rate of height decrease) during column collapse is

more prominent for lower receding contact angles. As seen for the Vs = 5.5 µL case in the

main text, increased recoil occurs in the experiment due to the aforementioned di�erences

in spreading, but the general features materialising are very similar. Note that recoil occurs

after, and so does not a�ect, jet formation.

Contact angle hysteresis

Figure S6: Numerically-generated regime map for jet dependence on droplet volume and
wettability, plotted against contact angle hysteresis. θ0 = 90° and Vf = 6 µL are �xed.
θa ∈ {100°, 110°, 120°} and θr ∈ {50°, 55°, . . . , 80°}, depending on the sessile droplet volume.

The droplet volume ratio against receding contact angle, θr regime map in the main text

is replotted against contact angle hysteresis, θa − θr in Figure S6. An acute lack of clear

regime boundaries is seen, indicating that contact angle hysteresis itself is not an accurate

predictor of jet formation. The importance of the advancing contact angle to jet formation

is therefore subordinated to that of the receding contact angle.
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